Live » History » Version 11
  Philippe May, 06/05/2019 17:46 
  
| 1 | 1 | Philippe May | h1. Live | 
|---|---|---|---|
| 2 | 1 | Philippe May | |
| 3 | 1 | Philippe May | While the primary intention is use a database for all layers, Gisaf has the capability to display layers directly from GeoPandas GeodataFrames. | 
| 4 | 1 | Philippe May | |
| 5 | 1 | Philippe May | In this case, they can also be updated dynamically, adding animation capabilities to the maps. | 
| 6 | 1 | Philippe May | |
| 7 | 1 | Philippe May | This can be used for, eg: | 
| 8 | 1 | Philippe May | |
| 9 | 1 | Philippe May | * displaying text (eg. temperatures, well levels) | 
| 10 | 1 | Philippe May | * moving elements | 
| 11 | 1 | Philippe May | * results of computations and analysis... | 
| 12 | 1 | Philippe May | |
| 13 | 1 | Philippe May | h2. Using live directly from a Python script on the Gisaf server | 
| 14 | 1 | Philippe May | |
| 15 | 1 | Philippe May | Eg: | 
| 16 | 1 | Philippe May | |
| 17 | 1 | Philippe May | <pre><code class="python"> | 
| 18 | 1 | Philippe May | #!/usr/bin/env python | 
| 19 | 1 | Philippe May | from asyncio import run | 
| 20 | 1 | Philippe May | |
| 21 | 1 | Philippe May | import geopandas as gpd | 
| 22 | 1 | Philippe May | |
| 23 | 1 | Philippe May | from shapely.geometry import Point | 
| 24 | 1 | Philippe May | |
| 25 | 1 | Philippe May | from gisaf.live import live_server | 
| 26 | 1 | Philippe May | |
| 27 | 1 | Philippe May | async def run(gs): | 
| 28 | 1 | Philippe May | gdf = gpd.GeoDataFrame( | 
| 29 | 1 | Philippe May |         data={ | 
| 30 | 1 | Philippe May | 'geometry': [ | 
| 31 | 1 | Philippe May | Point(12.01, 79.81) | 
| 32 | 1 | Philippe May | ] | 
| 33 | 1 | Philippe May | }, | 
| 34 | 1 | Philippe May | crs='epsg:4326' | 
| 35 | 1 | Philippe May | ) | 
| 36 | 1 | Philippe May | |
| 37 | 1 | Philippe May |     await live_server.publish_gdf('FooLayer', gdf) | 
| 38 | 1 | Philippe May | |
| 39 | 1 | Philippe May | |
| 40 | 1 | Philippe May | async def main(): | 
| 41 | 1 | Philippe May | await live_server.create_connections() | 
| 42 | 1 | Philippe May | await run(gs) | 
| 43 | 1 | Philippe May | |
| 44 | 1 | Philippe May | if __name__ == '__main__': | 
| 45 | 1 | Philippe May | run(main()) | 
| 46 | 1 | Philippe May | </code></pre> | 
| 47 | 2 | Philippe May | |
| 48 | 2 | Philippe May | Explanations: | 
| 49 | 2 | Philippe May | |
| 50 | 2 | Philippe May | 1. Initialize the connection with @live_server.create_connections()@. | 
| 51 | 2 | Philippe May | |
| 52 | 2 | Philippe May | 2. Publish a geo dataframe with @live_server.publish_gdf('name of the layer', gdf)@ | 
| 53 | 2 | Philippe May | |
| 54 | 8 | Philippe May | |
| 55 | 9 | Philippe May | This mode of operation is well adapted for live updates, when the script can be controlled by @systemd@ or similar OS service control tool. | 
| 56 | 8 | Philippe May | |
| 57 | 2 | Philippe May | h2. From Jupyter notebooks | 
| 58 | 1 | Philippe May | |
| 59 | 6 | Philippe May | Quite similarly to the case above, jupyter notebooks (running on a different machine) can be used to publish and control live layers through an HTTP POST API (at http:///api/live/my_channel_name), which is multipart (the layer definition in the first part, the data in the second). | 
| 60 | 6 | Philippe May | |
| 61 | 6 | Philippe May | <pre> | 
| 62 | 6 | Philippe May | from gisaf.ipynb_tools import Gisaf | 
| 63 | 6 | Philippe May | gs = Gisaf() | 
| 64 | 6 | Philippe May | async_run(gs.to_live_layer(my_channel_name, my_gdf)) | 
| 65 | 6 | Philippe May | </pre> | 
| 66 | 6 | Philippe May | |
| 67 | 7 | Philippe May | In other words, from the example above using directly Gisaf code, the only difference is the replacement of @await live_server.publish_gdf(...@ by @async_run(gs.to_live_layer(...@. | 
| 68 | 7 | Philippe May | |
| 69 | 6 | Philippe May | See the examples in @Templates/gisaf_live_templates@ of the avgs jupyter notebooks. | 
| 70 | 2 | Philippe May | |
| 71 | 11 | Philippe May | h2. Styling | 
| 72 | 11 | Philippe May | |
| 73 | 11 | Philippe May | The live layers can be styled with Mapbox (see https://www.mapbox.com/mapbox-gl-js/style-spec#types-layout). | 
| 74 | 11 | Philippe May | |
| 75 | 11 | Philippe May | Eg: | 
| 76 | 11 | Philippe May | <pre><code class="python"> | 
| 77 | 11 | Philippe May | await live_server.publish_gdf( | 
| 78 | 11 | Philippe May | 'FooLayer', | 
| 79 | 11 | Philippe May | gdf, | 
| 80 | 11 | Philippe May |     mapbox_layout={ | 
| 81 | 11 | Philippe May | 'text-line-height': 1, | 
| 82 | 11 | Philippe May | 'text-padding': 0, | 
| 83 | 11 | Philippe May | 'text-allow-overlap': True, | 
| 84 | 11 | Philippe May | 'text-field': '\ue005', | 
| 85 | 11 | Philippe May | 'icon-optional': True, | 
| 86 | 11 | Philippe May | 'text-font': ['GisafSymbols'], | 
| 87 | 11 | Philippe May | 'text-size': 32, | 
| 88 | 11 | Philippe May | }, | 
| 89 | 11 | Philippe May |     mapbox_paint={ | 
| 90 | 11 | Philippe May | 'text-color': 'green' | 
| 91 | 11 | Philippe May | } | 
| 92 | 11 | Philippe May | ) | 
| 93 | 11 | Philippe May | </code></pre> | 
| 94 | 11 | Philippe May | |
| 95 | 11 | Philippe May | h3. Data driven styling | 
| 96 | 11 | Philippe May | |
| 97 | 11 | Philippe May | One can leverage the power of Mapbox's data driven styling (using properties for each feature): | 
| 98 | 11 | Philippe May | |
| 99 | 11 | Philippe May | 1. Define one or more columns in the dataframe with a property to be used for styling (eg. color, text, etc) | 
| 100 | 11 | Philippe May | |
| 101 | 11 | Philippe May | 2. Pass the list of property columns to be given to mapbox with the @properties@ parameter of @publish_gdf@. | 
| 102 | 11 | Philippe May | |
| 103 | 11 | Philippe May | Eg: | 
| 104 | 11 | Philippe May | |
| 105 | 11 | Philippe May | <pre><code class="python"> | 
| 106 | 11 | Philippe May | await live_server.publish_gdf( | 
| 107 | 11 | Philippe May | gdf, | 
| 108 | 11 | Philippe May | 'Text', | 
| 109 | 11 | Philippe May |         mapbox_layout={ | 
| 110 | 11 | Philippe May |             "text-field": "{text}", | 
| 111 | 11 | Philippe May | "text-font": ["Noto Sans Regular"], | 
| 112 | 11 | Philippe May | "text-offset": [0, 0], | 
| 113 | 11 | Philippe May | "text-anchor": "center", | 
| 114 | 11 | Philippe May | "text-size": size, | 
| 115 | 11 | Philippe May | 'text-rotate': angle, | 
| 116 | 11 | Philippe May | }, | 
| 117 | 11 | Philippe May |         mapbox_paint={ | 
| 118 | 11 | Philippe May | 'text-color': color | 
| 119 | 11 | Philippe May | }, | 
| 120 | 11 | Philippe May | properties=['text'] | 
| 121 | 11 | Philippe May | )) | 
| 122 | 11 | Philippe May | </code></pre> | 
| 123 | 11 | Philippe May | |
| 124 | 2 | Philippe May | h2. Architecture | 
| 125 | 2 | Philippe May | |
| 126 | 2 | Philippe May | Gisaf live layers use a redis data store for: | 
| 127 | 2 | Philippe May | |
| 128 | 2 | Philippe May | 1. Storage of the live layers | 
| 129 | 2 | Philippe May | |
| 130 | 2 | Philippe May | 2. Publish/subscribe for live updates. | 
| 131 | 2 | Philippe May | |
| 132 | 2 | Philippe May | The live updates are sent through a websocket, initiated by the clients (web browsers). | 
| 133 | 2 | Philippe May | |
| 134 | 1 | Philippe May | Moreover, Gisaf exposes an HTTP API for external control of the live layers, eg. by Jupyter notebooks running on another server. | 
| 135 | 3 | Philippe May | |
| 136 | 10 | Philippe May | This mode of operation is well adapted for experimenting with GeoPandas and publishing the results directly in the context, with other layers coming from the database. | 
| 137 | 10 | Philippe May | |
| 138 | 5 | Philippe May | p=. !Live_arch.png! |